Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Eur Respir Rev ; 31(164)2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1789101

ABSTRACT

Prior to coronavirus disease 2019 (COVID-19), tuberculosis (TB) was the worst killer among infectious diseases. The union of these two obnoxious respiratory diseases can be devastating, with severe public health implications. The COVID-19 pandemic has affected all TB-elimination programmes due to the severe burden on healthcare systems and the diversion of funds and attention towards controlling the pandemic. The emerging data show that the COVID-19 pandemic caused a marked decrease in case notifications and bacille Calmette-Guérin immunisations, ultimately promoting disease transmission and increasing the susceptible population. The similarity between the clinical characteristics of TB and COVID-19 adds to the public health complications, with evidence of immune dysregulation in both cases leading to severe consequences. Clinical evidence suggests that severe acute respiratory syndrome coronavirus 2 infection predisposes patients to TB infection or may lead to reactivation of latent disease. Similarly, underlying TB disease can worsen COVID-19. Treatment options are limited in COVID-19; therefore, using immunosuppressive and immunomodulatory regimens that can modulate the concomitant bacterial infection and interaction with anti-TB drugs requires caution. Thus, considering the synergistic impact of these two respiratory diseases, it is crucial to manage both diseases to combat the syndemic of TB and COVID-19.


Subject(s)
COVID-19 , Tuberculosis , Antitubercular Agents , Humans , Pandemics , SARS-CoV-2 , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology
2.
Infect Genet Evol ; 96: 105101, 2021 12.
Article in English | MEDLINE | ID: covidwho-1506832

ABSTRACT

COVID-19 stalled the world in 2020 and continues to be the greatest health crisis of this generation. While the apparent case fatality rates across fluctuates around ~2% globally, associated mortality/death rate (deaths per million population) varies distinctly across regions from the global average of ~600 per million population. Heterogeneous factors have been linked with COVID-19 associated mortalities and these include age, share of geriatric population, comorbidities, trained immunity and climatic conditions. Apart from direct or indirect role of endemic diseases, dietary factors and host immunity in regulating COVID-19 severity, human behaviour will inevitably control outcome of this pandemic. Comprehensive understanding of these factors will have a bearing on management of future health crises.


Subject(s)
COVID-19/etiology , COVID-19/mortality , Angiotensin-Converting Enzyme 2/genetics , COVID-19/immunology , COVID-19/psychology , Comorbidity , Diabetes Mellitus/epidemiology , Diet , Humans , Immunity, Innate , Polymorphism, Genetic , Vaccines/immunology
3.
Int J Mol Sci ; 22(17)2021 Aug 24.
Article in English | MEDLINE | ID: covidwho-1374424

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak in December 2019 has caused a global pandemic. The rapid mutation rate in the virus has created alarming situations worldwide and is being attributed to the false negativity in RT-PCR tests. It has also increased the chances of reinfection and immune escape. Recently various lineages namely, B.1.1.7 (Alpha), B.1.617.1 (Kappa), B.1.617.2 (Delta) and B.1.617.3 have caused rapid infection around the globe. To understand the biophysical perspective, we have performed molecular dynamic simulations of four different spikes (receptor binding domain)-hACE2 complexes, namely wildtype (WT), Alpha variant (N501Y spike mutant), Kappa (L452R, E484Q) and Delta (L452R, T478K), and compared their dynamics, binding energy and molecular interactions. Our results show that mutation has caused significant increase in the binding energy between the spike and hACE2 in Alpha and Kappa variants. In the case of Kappa and Delta variants, the mutations at L452R, T478K and E484Q increased the stability and intra-chain interactions in the spike protein, which may change the interaction ability of neutralizing antibodies to these spike variants. Further, we found that the Alpha variant had increased hydrogen interaction with Lys353 of hACE2 and more binding affinity in comparison to WT. The current study provides the biophysical basis for understanding the molecular mechanism and rationale behind the increase in the transmissivity and infectivity of the mutants compared to wild-type SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/transmission , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/ultrastructure , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , COVID-19/virology , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Mutation , Protein Stability , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/ultrastructure , Thermodynamics
5.
Viruses ; 13(3)2021 03 09.
Article in English | MEDLINE | ID: covidwho-1143613

ABSTRACT

SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) has accumulated multiple mutations during its global circulation. Recently, three SARS-CoV-2 lineages, B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) and B.1.1.28.1 (P.1), have emerged in the United Kingdom, South Africa and Brazil, respectively. Here, we have presented global viewpoint on implications of emerging SARS-CoV-2 variants based on structural-function impact of crucial mutations occurring in its spike (S), ORF8 and nucleocapsid (N) proteins. While the N501Y mutation was observed in all three lineages, the 501Y.V1 and P.1 accumulated a different set of mutations in the S protein. The missense mutational effects were predicted through a COVID-19 dedicated resource followed by atomistic molecular dynamics simulations. Current findings indicate that some mutations in the S protein might lead to higher affinity with host receptors and resistance against antibodies, but not all are due to different antibody binding (epitope) regions. Mutations may, however, result in diagnostic tests failures and possible interference with binding of newly identified anti-viral candidates against SARS-CoV-2, likely necessitating roll out of recurring "flu-like shots" annually for tackling COVID-19. The functional relevance of these mutations has been described in terms of modulation of host tropism, antibody resistance, diagnostic sensitivity and therapeutic candidates. Besides global economic losses, post-vaccine reinfections with emerging variants can have significant clinical, therapeutic and public health impacts.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/therapy , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/immunology , Humans , Molecular Dynamics Simulation , Mutation , Public Health , SARS-CoV-2/chemistry , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
Infect Genet Evol ; 84: 104384, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-436790

ABSTRACT

In less than five months, COVID-19 has spread from a small focus in Wuhan, China, to more than 5 million people in almost every country in the world, dominating the concern of most governments and public health systems. The social and political distresses caused by this epidemic will certainly impact our world for a long time to come. Here, we synthesize lessons from a range of scientific perspectives rooted in epidemiology, virology, genetics, ecology and evolutionary biology so as to provide perspective on how this pandemic started, how it is developing, and how best we can stop it.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Host-Pathogen Interactions/genetics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2 , Animals , Asia/epidemiology , Betacoronavirus/classification , Betacoronavirus/genetics , Biological Coevolution , COVID-19 , Chiroptera/virology , Coronavirus Infections/diagnosis , Europe/epidemiology , Eutheria/virology , Gene Expression , Host-Pathogen Interactions/drug effects , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , North America/epidemiology , Pandemics , Peptidyl-Dipeptidase A/immunology , Phylogeny , Pneumonia, Viral/diagnosis , SARS-CoV-2 , Severity of Illness Index , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL